Evidence-based Tailored Implementation Strategies for eMental Health - the ImpleMentAll project

P.D.C. Vis¹, J.J. Ruwaard^{1,6}, T. Finch², A. Etzelmueller^{3,4}, J. Schuurmans⁶, J. Piera⁷, D.D. Ebert^{3,4}, C. Duedal Pedersen⁸, J.H. Smit⁶, C.R. May⁵, H. Riper^{1,6}, ImpleMentAll consortium

¹Clinical Psychology, VU Amsterdam, NL; ²Healthcare Organisation, Practice Improvement and Economics, Northumbria University Newcastle, UK; ³Friedrich Alexander University, DE; 4Get.On Institute, DE; 5Health Sciences, University of Southampton, UK; 6Research and innovation, GGZ InGeest, NL; Badalona Serveis Assistencials, SP, 8CIMT, Region of South Denmark, DK

Introduction

- There is a need for effective strategies to promote Internet-based Cognitive Behaviour Therapy (iCBT) use in routine practice.
- No one-size-fits-all solution to implementing iCBT across Europe
- Context matters, context changes over time, and adaptation is necessary to obtain an optimal fit: Prospective Tailored Implementation.
- By systematically addressing implementation impeding factors in the context of a local setting, it is expected that iCBT can be implemented more quickly and more efficiently.

Research question

Does prospective tailored implementation for iCBT lead to better implementation outcomes in mental health care providers than implementation-as-usual does?

Methods

- Design: Stepped Wedge Trial (Figure 1).
- Experimental condition: ItFits-toolkit (Figure 2).
- Control condition: Implementation-as-Usual.
- Setting: 12 implementation sites across Europe and Australia currently implementing iCBT in routine care.
- · Primary outcomes: Uptake, Normalisation, and Implementation costs.
- Exploratory analysis includes process measures and ethnographic case comparisons.

ure 1. Characteristics of the SWT design for the ImpleMentAll project. Groups are domised to a cross-over point, a = crossover point; b = time between (2nd and 3rd) scovers, c = pre-vallout period; d = repeated measurements (every 3 months); e = und period; f = post-vallout period; f = post-vallout period.

Figure 2. IlFits-toolkit: a standardised stepped approach to prospectively develop evidence-based implementation strategies. Steps 1, 2 and 3 draw on scientific evidence including determinants of practices, implementation strategies (e.g. behavioral change techniques), and measurement instruments utilising the MAST framework.

Results

If the ImpleMentAll project is successful we will:

- Know if prospective tailoring is more effective and/or efficient than Implementation-as-Usual.
- · Have contributed to our understanding of implementation processes and developed concrete instruments to assess implementation success reliably.
- Disseminate the ItFits-toolkit an automated online self-help implementation toolkit.

Conclusion

ImpleMentAll integrates evaluation and decision support tools and normalisation and implementation theory with empirical validation of tailored implementation strategies.

The project runs from January 2017 - March 2021 and has a budget of ~6.7 million Euro.

Contact: Christiaan Vis | p.d.c.vis@vu.nl

Consortium

(ANU)

This project has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement no. 733025

ImpleMentAll: a step towards evidence-based implementation More information at www.implementall.eu or follow us @EU ImpleMentAll

